This report contains different preliminary plots and tables that may be relevant for analyzing the results. Given a problem consisting of \(m\) subproblems with \(Y_N^s\) given for each subproblem \(s\), we use a filtering algorithm to find \(Y_N\).
The following instance/problem groups are generated given:
u
and l
.1235 problems have been solved.
What is \(|Y_N|\) given the different methods of generating the set of nondominated points for the subproblems?
## # A tibble: 4 × 3
## method mean_card n
## <chr> <dbl> <int>
## 1 l 1506031. 315
## 2 m 572395. 310
## 3 u 109824. 310
## 4 ul 206763. 300
We use plots to check for effects of \(p\), \(m\) and subset size:
Let us try to fit the results using function \(y=c_1 s^{(c_2p)} m^{c_3p}\) (different functions was tried and this gave the highest \(R^2\)) for each method:
## # A tibble: 4 × 15
## method fit tidied r.squared adj.r.squared sigma statistic p.value df
## <chr> <list> <list> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 l <lm> <tibble> 0.856 0.855 1.05 929. 3.90e-132 2
## 2 m <lm> <tibble> 0.768 0.766 1.25 507. 5.07e- 98 2
## 3 ul <lm> <tibble> 0.903 0.903 0.747 1389. 1.89e-151 2
## 4 u <lm> <tibble> 0.947 0.947 0.527 2759. 6.52e-197 2
## # ℹ 6 more variables: logLik <dbl>, AIC <dbl>, BIC <dbl>, deviance <dbl>,
## # df.residual <int>, nobs <int>
## # A tibble: 4 × 4
## method c1 c2 c3
## <chr> <dbl> <dbl> <dbl>
## 1 l 83.0 0.0836 1.24
## 2 m 89.2 0.0847 1.11
## 3 ul 30.1 0.117 1.12
## 4 u 23.5 0.135 0.955
The parameters estimates are:
We classify the nondominated points into, extreme, supported non-extreme and unsupported.
Relative number of extreme:
## # A tibble: 1 × 3
## minPctEx avePctExt maxPctEx
## <dbl> <dbl> <dbl>
## 1 0.000461 0.0449 0.330
## # A tibble: 4 × 4
## method minPctEx avePctExt maxPctEx
## <chr> <dbl> <dbl> <dbl>
## 1 l 0.00443 0.0761 0.302
## 2 ul 0.00635 0.0719 0.330
## 3 m 0.000461 0.0205 0.147
## 4 u 0.00196 0.0132 0.104